Farmacogenética: Una herramienta imprescindible en la medicina de precisión

Por Mar Benito MScLinkedin

Los tests farmacogenéticos junto con la demás información sobre los pacientes y su enfermedad tienen una gran importancia en la terapia farmacológica. El conocimiento del genotipo del paciente se puede utilizar para determinar la estrategia terapéutica, la dosis apropiada, y calcular la probabilidad de beneficio o efectos secundarios.

Las tablas que se presentan a continuación contienen las asociaciones evaluadas por la FDA, en las que se considera que hay suficientes pruebas científicas para sugerir que los grupos de pacientes con ciertas variantes genéticas puedan tener con más probabilidad un metabolismo del fármaco alterado, o efectos terapéuticos diferentes, lo que incluye diferencias en el riesgo de efectos secundarios. El hecho que la FDA haya incluido una interacción particular con un fármaco no significa que abogue por el uso de un test genético antes de prescribir el fármaco correspondiente. Esto solo es necesario en el caso de que el test esté indicado para el diagnóstico, es decir, que sea esencial para el uso seguro y efectivo de un producto terapéutico, incluyendo los que identifican a los pacientes en los que este producto está contraindicado. Esta tabla publicada por la FDA,  no pretende tener un efecto sobre las políticas y requerimientos regulatorios actuales, ni evaluar el uso efectivo y seguro de los tests para detectar variantes en los genes referenciados. Tampoco pretende dar una información exhaustiva de las interacciones descritas entre los fármacos y los genes.

Para algunas asociaciones farmacogenéticas se presenta una información específica sobre  el manejo de los fármacos, pero en la mayoría de los casos no se ha evaluado el impacto de realizar los tests genéticos sobre el desenlace la enfermedad. Además, en el caso de existir estudios clínicos, en ellos solo se ha relacionado la variación genética con la farmacocinética del producto, y seguramente se desconocen las diferencias en la eficacia y seguridad entre los diferentes subgrupos genotípicos. Si no se mencionan la relación con la eficacia o la seguridad es porque no hay suficiente evidencia científica.

La FDA reconoce que los sanitarios tienen que tener en cuenta muchas pruebas científicas a la hora de prescribir un tratamiento. La información genética del paciente es solo uno de los muchos factores que puede afectar a las concentraciones y a la respuesta a un fármaco. Hay que saber que la siguiente tabla se limita solo a ciertas asociaciones farmacogenéticas y no contiene información exhaustiva sobre el uso efectivo y seguro de los fármacos. Los sanitarios se tienen que ceñir a la información aprobada por las agencias reguladoras. Además, esta tabla está dirigida a los médicos, y los pacientes no deben ajustar sus medicaciones sin consultar a su doctor.

Esta versión de la tabla se limita a las asociaciones farmacogenéticas de las variantes de los genes relacionados con las enzimas metabolizadoras de fármacos y los transportadores de fármacos, además de las variantes relacionadas con la predisposición a ciertos efectos secundarios. La FDA reconoce que existen otras asociaciones farmacogenéticas que hasta el momento no están listadas, por ello su objetivo es actualizar esta tabla con nueva información avalada por las pruebas científicas.

La tabla describe las interacciones gen-fármaco e indica el subgrupo específico al que se aplica la interacción. Los subgrupos afectados pueden ser portadores de una variante genética específica o de un genotipo inferido de un fenotipo. También pueden ser metabolizadores ultrarrápidos, normales, intermedios y lentos o tener una función del transportador ultrarrápida, normal, intermedia o lenta. Los de función o metabolismo normal no tienen variantes genéticas con impacto en el metabolismo o en la función del transportador. En general los metabolizadores ultrarrápidos tienen dos o más copias de una variante que incrementa la función metabólica, los metabolizadores intermedios o con función del transportador reducida suelen tener una o dos copias de una variante genética que reduce la capacidad de metabolizar o transportar un fármaco, y los metabolizadores lentos o con función de transporte lento suelen tener dos copias de una variante genética que causa poca o nula capacidad de metabolizar o transportar un fármaco.

Asociaciones farmacogenéticas en las que los datos avalan las recomendaciones para el manejo terapéutico

Drug Gene Affected Subgroups+ Description of Gene-Drug Interaction
Abacavir HLA-B *57:01 allele positive Results in higher adverse reaction risk (hypersensitivity reactions). Do not use abacavir in patients positive for HLA-B*57:01.
Amifampridine  NAT2 poor metabolizers Results in higher systemic concentrations and higher adverse reaction risk. Use lowest recommended starting dosage and monitor for adverse reactions. Refer to FDA labeling for specific dosing recommendations.
Amifampridine Phosphate NAT2 poor metabolizers Results in higher systemic concentrations. Use lowest recommended starting dosage (15 mg/day) and monitor for adverse reactions.
Amphetamine CYP2D6 poor metabolizers May affect systemic concentrations and adverse reaction risk. Consider lower starting dosage or use alternative agent.
Aripiprazole CYP2D6 poor metabolizers Results in higher systemic concentrations and higher adverse reaction risk. Dosage adjustment is recommended. Refer to FDA labeling for specific dosing recommendations.
Aripiprazole Lauroxil  CYP2D6 poor metabolizers Results in higher systemic concentrations. Dosage adjustment is recommended. Refer to FDA labeling for specific dosing recommendations.
Atomoxetine CYP2D6 poor metabolizers Results in higher systemic concentrations and higher adverse reaction risk. Adjust titration interval and increase dosage if tolerated. Refer to FDA labeling for specific dosing recommendations.
Azathioprine TPMT and/or NUDT15 intermediate or poor metabolizers Alters systemic active metabolite concentration and dosage requirements. Results in higher adverse reaction risk (myelosuppression). Consider alternative therapy in poor metabolizers. Dosage reduction is recommended in intermediate metabolizers for NUDT15 or TPMT. Intermediate metabolizers for both genes may require more substantial dosage reductions. Refer to FDA labeling for specific dosing recommendations.
Belinostat UGT1A1 *28/*28 (poor metabolizers) May result in higher systemic concentrations and higher adverse reaction risk. Reduce starting dose to 750 mg/m2 in poor metabolizers.
Brexpiprazole  CYP2D6 poor metabolizers Results in higher systemic concentrations. Dosage adjustment is recommended. Refer to FDA labeling for specific dosing recommendations.
Brivaracetam CYP2C19 intermediate or poor metabolizers Results in higher systemic concentrations and higher adverse reaction risk. Consider dosage reductions in poor metabolizers.
Capecitabine DPYD intermediate or poor metabolizers Results in higher adverse reaction risk (severe, life-threatening, or fatal toxicities). No dosage has proven safe in poor metabolizers, and insufficient data are available to recommend a dosage in intermediate metabolizers. Withhold or discontinue in the presence of early-onset or unusually severe toxicity.
Carbamazepine HLA-B *15:02 allele positive Results in higher adverse reaction risk (severe skin reactions). Avoid use unless potential benefits outweigh risks and consider risks of alternative therapies. Patients positive for HLA-B*15:02 may be at increased risk of severe skin reactions with other drugs that are associated with a risk of Stevens Johnson Syndrome/Toxic Epidermal necrolysis (SJS/TEN). Genotyping is not a substitute for clinical vigilance.
Celecoxib CYP2C9 poor metabolizers Results in higher systemic concentrations. Reduce starting dose to half of the lowest recommended dose in poor metabolizers. Consider alternative therapy in patients with juvenile rheumatoid arthritis.
Citalopram CYP2C19 poor metabolizers Results in higher systemic concentrations and adverse reaction risk (QT prolongation). The maximum recommended dose is 20 mg.
Clobazam CYP2C19 intermediate or poor metabolizers Results in higher systemic active metabolite concentrations. Poor metabolism results in higher adverse reaction risk. Dosage adjustment is recommended. Refer to FDA labeling for specific dosing recommendations.
Clopidogrel CYP2C19 intermediate or poor metabolizers Results in lower systemic active metabolite concentrations, lower antiplatelet response, and may result in higher cardiovascular risk. Consider use of another platelet P2Y12 inhibitor.
Clozapine CYP2D6 poor metabolizers Results in higher systemic concentrations. Dosage reductions may be necessary.
Codeine CYP2D6 ultrarapid metabolizers Results in higher systemic active metabolite concentrations and higher adverse reaction risk (life-threatening respiratory depression and death). Codeine is contraindicated in children under 12 years of age.
Deutetrabenazine CYP2D6 poor metabolizers Results in higher systemic concentrations and adverse reaction risk (QT prolongation). The maximum recommended dosage should not exceed 36 mg (maximum single dose of 18 mg).
Dronabinol CYP2C9 intermediate or poor metabolizers May result in higher systemic concentrations and higher adverse reaction risk. Monitor for adverse reactions.
Eliglustat CYP2D6 ultrarapid, normal, intermediate, or poor metabolizers Alters systemic concentrations, effectiveness, and adverse reaction risk (QT prolongation). Indicated for normal, intermediate, and poor metabolizer patients. Ultrarapid metabolizers may not achieve adequate concentrations to achieve a therapeutic effect. The recommended dosages are based on CYP2D6 metabolizer status. Coadministration with strong CYP3A inhibitors is contraindicated in intermediate and poor CYP2D6 metabolizers. Refer to FDA labeling for specific dosing recommendations.
Erdafitinib  CYP2C9 *3/*3 (poor metabolizers) May result in higher systemic concentrations and higher adverse reaction risk. Monitor for adverse reactions.
Flibanserin CYP2C19 poor metabolizers May result in higher systemic concentrations and higher adverse reaction risk. Monitor patients for adverse reactions.
Flurbiprofen CYP2C9 poor metabolizers Results in higher systemic concentrations. Use a reduced dosage.
Fluorouracil DPYD intermediate or poor metabolizer Results in higher adverse reaction risk (severe, life-threatening, or fatal toxicities). No dosage has proven safe in poor metabolizers and insufficient data are available to recommend a dosage in intermediate metabolizers. Withhold or discontinue in the presence of early-onset or unusually severe toxicity.
Gefitinib CYP2D6 poor metabolizers Results in higher systemic concentrations and higher adverse reaction risk. Monitor for adverse reactions.
Iloperidone CYP2D6 poor metabolizers Results in higher systemic concentrations and higher adverse reaction risk (QT prolongation). Reduce dosage by 50%.
Irinotecan UGT1A1 *28/*28 (poor metabolizers) Results in higher systemic active metabolite concentrations and higher adverse reaction risk (severe neutropenia). Consider reducing the starting dosage by one level and modify the dosage based on individual patient tolerance.
Lofexidine CYP2D6 poor metabolizers Results in higher systemic concentrations and higher adverse reaction risk. Monitor for orthostatic hypotension and bradycardia.
Meclizine CYP2D6 ultrarapid, intermediate, or poor metabolizers May affect systemic concentrations. Monitor for adverse reactions and clinical effect.
Metoclopramide CYP2D6 poor metabolizers Results in higher systemic concentrations and higher adverse reaction risk. The recommended dosage is lower. Refer to FDA labeling for specific dosing recommendations.
Mercaptopurine TPMT and/or NUDT15 intermediate or poor metabolizers Alters systemic active metabolite concentration and dosage requirements. Results in higher adverse reaction risk (myelosuppression). Initial dosages should be reduced in poor metabolizers; poor metabolizers generally tolerate 10% or less of the recommended dosage. Intermediate metabolizers may require dosage reductions based on tolerability. Intermediate metabolizers for both genes may require more substantial dosage reductions. Refer to FDA labeling for specific dosing recommendations.
Mivacurium BCHE intermediate or poor metabolizers Results in higher systemic concentrations and higher adverse reaction risk (prolonged neuromuscular blockade). Avoid use in poor metabolizers.
Pantoprazole CYP2C19 poor metabolizers Results in higher systemic concentrations. Consider dosage reduction in children who are poor metabolizers. No dosage adjustment is needed for adult patients who are poor metabolizers.
Pimozide CYP2D6 poor metabolizers Results in higher systemic concentrations. Dosages should not exceed 0.05 mg/kg in children or 4 mg/day in adults who are poor metabolizers and dosages should not be increased earlier than 14 days.
Piroxicam CYP2C9 intermediate or poor metabolizers Results in higher systemic concentrations. Consider reducing dosage in poor metabolizers.
Propafenone CYP2D6 poor metabolizers Results in higher systemic concentrations and higher adverse reaction risk (arrhythmia). Avoid use in poor metabolizers taking a CYP3A4 inhibitor.
Siponimod CYP2C9 intermediate or poor metabolizers Results in higher systemic concentrations. Adjust dosage based on genotype. Do not use in patients with CYP2C9 *3/*3 genotype. Refer to FDA labeling for specific dosing recommendations.
Succinylcholine  BCHE intermediate or poor metabolizers Results in higher systemic concentrations and higher adverse reaction risk (prolonged neuromuscular blockade). Avoid use in poor metabolizers. May administer test dose to assess sensitivity and administer cautiously via slow infusion.
Tacrolimus CYP3A5 intermediate or normal metabolizers Results in lower systemic concentrations and lower probability of achieving target concentrations. Measure drug concentrations and adjust dosage based on trough whole blood tacrolimus concentrations.
Tetrabenazine CYP2D6 poor metabolizers Results in higher systemic concentrations. The maximum recommended single dose is 25 mg and should not exceed 50 mg/day.
Thioguanine TPMT and/or NUDT15 intermediate or poor metabolizers Alters systemic active metabolite concentration and dosage requirements. Results in higher adverse reaction risk (myelosuppression). Initial dosages should be reduced in poor metabolizers; poor metabolizers generally tolerate 10% or less of the recommended dosage. Intermediate metabolizers may require dosage reductions based on tolerability. Intermediate metabolizers for both genes may require more substantial dosage reductions. Refer to FDA labeling for specific dosing recommendations.
Thioridazine CYP2D6 poor metabolizers Results in higher systemic concentrations and higher adverse reaction risk (QT prolongation). Predicted effect based on experience with CYP2D6 inhibitors. Contraindicated in poor metabolizers.
Tramadol CYP2D6 Ultrarapid metabolizers3 Results in higher systemic and breast milk active metabolite concentrations, which may result in respiratory depression and death. Contraindicated in children under 12 and in adolescents following tonsillectomy/adenoidectomy. Breastfeeding is not recommended during treatment.
Valbenazine CYP2D6 poor metabolizers Results in higher systemic active metabolite concentrations and higher adverse reaction risk (QT prolongation). Dosage reductions may be necessary.
Venlafaxine CYP2D6 poor metabolizers Alters systemic parent drug and metabolite concentrations. Consider dosage reductions.
Vortioxetine CYP2D6 poor metabolizers Results in higher systemic concentrations. The maximum recommended dose is 10 mg.
Warfarin CYP2C9 intermediate or poor metabolizers Alters systemic concentrations and dosage requirements. Select initial dosage, taking into account clinical and genetic factors. Monitor and adjust dosages based on INR.
Warfarin CYP4F2 V433M variant carriers May affect dosage requirements. Monitor and adjust doses based on INR.
Warfarin VKORC1 -1639G>A variant carriers Alters dosage requirements. Select initial dosage, taking into account clinical and genetic factors. Monitor and adjust dosages based on INR.

 

Asociaciones farmacognéticas en las que los datos indican un potencial impacto en la seguridad o en la respuesta

Drug Gene Affected Subgroups+ Description of Gene-Drug Interaction
Allopurinol HLA-B *58:01 allele positive Results in higher adverse reaction risk (severe skin reactions).
Carbamazepine HLA-A *31:01 allele positive Results in higher adverse reaction risk (severe skin reactions). Consider risk and benefit of carbamazepine use in patients positive for HLA-A*31:01. Genotyping is not a substitute for clinical vigilance.
Carvedilol CYP2D6 poor metabolizers Results in higher systemic concentrations and higher adverse reaction risk (dizziness).
Cevimeline CYP2D6 poor metabolizers May result in higher adverse reaction risk. Use with caution.
Codeine CYP2D6 poor metabolizers Results in lower systemic active metabolite concentrations and may result in reduced efficacy.
Efavirenz CYP2B6 poor metabolizers Results in higher systemic concentrations and higher adverse reaction risk (QT prolongation).
Isoniazid Nonspecific (NAT) poor metabolizers May result in higher systemic concentrations and adverse reaction risk.
Lapatinib HLA-DRB1 *07:01 allele positive Results in higher adverse reaction risk (hepatotoxicity). Monitor liver function tests regardless of genotype.
Lapatinib HLA-DQA1 *02:01 allele positive Results in higher adverse reaction risk (hepatotoxicity). Monitor liver function tests regardless of genotype.
Nilotinib UGT1A1 *28/*28 (poor metabolizers) Results in higher adverse reaction risk (hyperbilirubinemia).
Oxcarbazepine HLA-B *15:02 allele positive Results in higher adverse reaction risk (severe skin reactions). Patients positive for HLA-B*15:02 may be at increased risk of severe skin reactions with other drugs that are associated with a risk of Stevens Johnson Syndrome/Toxic Epidermal necrolysis (SJS/TEN). Genotyping is not a substitute for clinical vigilance.
Pazopanib HLA-B *57:01 allele positive May result in higher adverse reaction risk (liver enzyme elevations). Monitor liver function tests regardless of genotype.
Pazopanib UGT1A1 *28/*28 (poor metabolizers) Results in higher adverse reaction risk (hyperbilirubinemia).
Perphenazine CYP2D6 poor metabolizers Results in higher systemic concentrations and higher adverse reaction risk.
Procainamide Nonspecific (NAT) poor metabolizers Alters systemic parent drug and metabolite concentrations. May result in higher adverse reaction risk.
Simvastatin SLCO1B1 521 TC or 521 CC (intermediate or poor function transporters) Results in higher systemic concentrations and higher adverse reaction risk (myopathy). The risk of adverse reaction (myopathy) is higher for patients on 80 mg than for those on lower doses.
Sulfamethoxazole and Trimethoprim Nonspecific (NAT) poor metabolizers May result in higher adverse reaction risk.
Sulfasalazine Nonspecific (NAT) poor metabolizers Results in higher systemic metabolite concentrations and higher adverse reaction risk.
Tolterodine CYP2D6 poor metabolizers Results in higher systemic concentrations and higher adverse reaction risk (QT prolongation).

 

Asociaciones farmacogenéticas en las que los datos demuestran solo un potencial impacto en las propiedades farmacocinéticas

No se ha establecido el impacto de estas variantes genéticas o de los fenotipos inferidos a partir de ellas en la seguridad o respuesta del fármaco correspondiente.

Drug Gene Affected Subgroups+ Description of Gene-Drug Interaction
Amitriptyline  CYP2D6 ultrarapid, intermediate, or poor metabolizers May alter systemic concentrations.
Amoxapine CYP2D6 ultrarapid, intermediate, or poor metabolizers May alter systemic concentrations.
Avatrombopag CYP2C9 intermediate or poor metabolizers Results in higher systemic concentrations.
Carisoprodol CYP2C19 poor metabolizers Results in higher systemic concentrations. Use with caution.
Clomipramine CYP2D6 ultrarapid, intermediate, or poor metabolizers May alter systemic concentrations.
Darifenacin CYP2D6 poor metabolizers Results in higher systemic concentrations.
Desipramine CYP2D6 ultrarapid, intermediate, or poor metabolizers May alter systemic concentrations.
Dexlansoprazole CYP2C19 intermediate or poor metabolizers Results in higher systemic concentrations.
Diazepam CYP2C19 poor metabolizers May affect systemic concentrations.
Dolutegravir UGT1A1 poor metabolizers Results in higher systemic concentrations.
Donepezil CYP2D6 ultrarapid or poor metabolizers Alters systemic concentrations.
Doxepin CYP2C19 intermediate or poor metabolizers Results in higher systemic concentrations.
Doxepin CYP2D6 ultrarapid, intermediate, or poor metabolizers May alter systemic concentrations.
Elagolix  SLCO1B1 521 CC (poor function transporters) Results in higher systemic concentrations.
Escitalopram CYP2C19 poor metabolizers May result in higher systemic concentrations.
Esomeprazole CYP2C19 poor metabolizers Results in higher systemic concentrations.
Fesoterodine CYP2D6 poor metabolizers Results in higher systemic active metabolite concentrations.
Fluvoxamine  CYP2D6 poor metabolizers Results in higher systemic concentrations. Use with caution.
Galantamine CYP2D6 poor metabolizers Results in higher systemic concentrations. Titrate dosage based on tolerability.
Hydralazine  Nonspecific (NAT) poor metabolizers Results in higher systemic concentrations.
Imipramine CYP2D6 ultrarapid, intermediate, or poor metabolizers May alter systemic concentrations.
Metoprolol CYP2D6 poor metabolizers Results in higher systemic concentrations.
Mirabegron CYP2D6 poor metabolizers Results in higher systemic concentrations.
Nebivolol CYP2D6 poor metabolizers May result in higher systemic concentrations.
Nortriptyline CYP2D6 ultrarapid, intermediate, or poor metabolizers May alter systemic concentrations.
Omeprazole CYP2C19 intermediate or poor metabolizers Results in higher systemic concentrations.
Paroxetine CYP2D6 ultrarapid, intermediate, or poor metabolizers May alter systemic concentrations.
Propranolol CYP2D6 poor metabolizers May affect systemic concentrations.
Protriptyline CYP2D6 poor metabolizers Results in higher systemic concentrations.
Rabeprazole CYP2C19 poor metabolizers Results in higher systemic concentrations.
Raltegravir UGT1A1 *28/*28 (poor metabolizers) Results in higher systemic concentrations.
Risperidone CYP2D6 poor metabolizers Alters systemic parent drug and metabolite concentrations.
Rosuvastatin SLCO1B1 521 CC (poor function transporters) Results in higher systemic concentrations.
Tamoxifen CYP2D6 intermediate or poor metabolizers Results in lower systemic active metabolite concentrations. The impact of CYP2D6 intermediate or poor metabolism on efficacy is not well established.
Tamsulosin CYP2D6 poor metabolizers Results in higher systemic concentrations. Predicted effect based on experience with CYP2D6 inhibitors. Use with caution.
Trimipramine CYP2D6 ultrarapid, intermediate, or poor metabolizers May alter systemic concentrations.
Voriconazole CYP2C19 intermediate or poor metabolizers Results in higher systemic concentrations.

 

En algunos casos una variante genética específica puede afectar al metabolismo de varios fármacos de forma diferente. En los casos en que la asociación se limita a variantes genéticas específicas y no se aplica a todos los individuos con el genotipo inferido del fenotipo las variantes se especifican en la tabla.

Please follow and like us: